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Abstract

In this paper, we develop numerical methods for the natural convection flow from a vertical flat plate with a surface
temperature oscillation. In the steady case, numerical results for the Grashof numbers 0-625 are obtained using an
iterative approach and the results for small Grashof numbers are validated using a perturbation method. For larger
values of the Grashof numbers, an unsteady numerical scheme is constructed and the results obtained at large times are
compared with the steady solutions. Further, the results for very large Grashof numbers, up to 10000, show that the
unsteady solution approaches a steady solution. All the results obtained show that the proposed methods are very
efficient and accurate. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

A body whose temperature is maintained at a higher
value than that of the surrounding ambient fluid sup-
plies heat to the medium and this results in the pro-
duction of buoyancy forces within the medium. In a
fluid of very small viscosity then boundary layers often
exist and a classical example of such a flow is that of the
fluid flow along a heated semi-infinite vertical flat plate,
first considered by Pohlhausen [1], where the buoyancy
force is parallel to the plate. This problem has become a
very attractive and important subject of investigation
over the last seven decades. A detailed review on the
work of this famous problem has been given in several
excellent review papers and books, see for example [2-8].

With the exception of a few specially prescribed
boundary conditions at the wall, discovered by Sparrow
and Gregg [9] and Semenov [10], the problem of vertical
free convection boundary-layer flow is, in general, non-
similar. Thus, one often has to solve a set of coupled
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nonlinear partial differential equations numerically. The
local similar method avoids this by deleting the
streamwise derivative terms and this changes the partial
differential equations into nonlinear ordinary differential
equations which still have to be solved numerically.
However, the error introduced by this technique cannot
be easily estimated and Sparrow et al. [11] introduced
the locally non-similar method to improve this concept.
However, like the locally similar method, this technique
is locally autonomous. Solutions at any specified
streamwise station can be obtained without first ob-
taining upstream solutions. Keller and Yang [12] em-
ployed a Gortler-type series to study the free convection
boundary-layer over a non-isothermal vertical plate and
in their analysis the wall temperature was assumed to be
represented by a power series in the streamwise coordi-
nate. Later, Kao et al. [13] proposed the method of
strained coordinates for the computation of the wall
heat transfer parameter for a plate with an arbitrary
prescribed surface temperature. In this method, the co-
ordinate along the plate was transformed by using an
integral function of the specified wall temperature so
that the problem can be solved once and for all with any
specified surface conditions. The non-similar solution
can then be obtained for the local similarity solution by
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Nomenclature

c,d  constants

g magnitude of the gravitational acceleration

Gr  Grashof number = gBATE /v?

/ length scaling

Nu  average Nusselt number = — [F0T/dy|,_,dx

Pr Prandtl number = v/a

t time

T,T dimensionless temperatures defined in Egs. (2)
and (8)

u,v  dimensionless x- and y-velocity components

Uy velocity scaling

x,y  Cartesian coordinates along and normal to the
plate, respectively

Greek symbols
o thermal diffusivity

p coeflicient of thermal expansion
b constant

At time step

AT  temperature scaling

v viscosity of fluid

Y,  dimensionless stream functions defined in Eqgs.
(2) and (8)

w,® dimensionless vorticities defined in Egs. (2)
and (8)

Subscripts

w condition at the wall

00 ambient condition

Superscripts

— dimensional variables
! differentiation with respect to y

determining an appropriate wedge parameter in such a
way that the local similarity results give a value that
would be obtained if one considers the non-local simi-
larity solution method. Following this technique, the
determination of the appropriate wedge parameter in-
volves an estimation and iterative procedure. Further,
Yang et al. [14] proposed an alternative method to
evaluate the surface heat transfer rate and the wall shear
stress for this vertical free convection boundary-layer
flow considered by Kao et al. [13] using a Merk-type
series solution [15]. The governing coupled partial dif-
ferential equations were transformed into a sequence of
coupled ordinary differential equations which were then
solved numerically by a fourth-order Runge-Kutta
scheme with an incorporated least-squares convergence
criteria for the zeroth-order solution and with the
Newton—-Raphson iteration scheme for higher-order
solutions. Tables of the universal functions and their
surface derivatives have been presented for some values
of the Prandtl number. It is important to mention here
the excellent paper by Na [16] in which a very efficient
implicit finite-difference method, known as the Keller-
box method and introduced by Keller and Cebeci [17],
for more details see [18], has been used to solve the
parabolic system of equations for the vertical free con-
vection boundary-layer for a plate with non-uniform
temperature distributions. Using this method, the re-
sulting nonlinear difference equations are linearized by
the method of quasilinearization and the algebraic
equations are then solved by an efficient block-tridiag-
onal factorization technique. The local rates of heat
transfer as a function of the distance along the plate
were tabulated for a large range of values of the Prandtl
number from 0.01 to 100 and for a few cases of the wall
temperature distributions. It is worth mentioning that

the Keller-box method has become a very popular
technique in fluid mechanics and heat transfer theory,
see for example [8,19].

The problem when the surface temperature on the
vertical plate oscillates with the streamwise coordinate
has been investigated by Yang [14], Na [16], Kao [20]
and Rees [21]. However, very recently Rees [21] has
studied, both numerically and analytically, the situation
when the sinusoidal surface temperature oscillates about
a constant mean value which is held above the am-
bient temperature of the fluid. The Keller-box method,
coupled with a multi-dimensional Newton-Raphson it-
eration scheme was employed to solve the resulting set
of nonlinear differential equations. In this methodology
the difference equations are defined within the Fortran
code and the iteration matrix, which is the Frechet de-
rivative of the difference equations, has been determined
using numerical differentiation, rather than being spec-
ified explicitly within the code. Such a technique, pro-
posed by Rees [21], although slower in execution than
when the matrix is defined explicitly, admits a much
faster code development. Rees [21] has also made an
asymptotic analysis which is valid at large distances
from the leading edge. It was shown that an important
feature of the flow is that a near-wall layer (inner layer)
develops at large distances downstream of the leading
edge and the growth of this inner layer decreases with
increasing distance downstream. This observation is
supported by both numerical simulations and the two-
term asymptotic solution which are in extremely good
agreement.

In spite of the extensive studies on the convective
heat transfer from a heated vertical flat plate there is
still a need for a more detailed solution method
and accurate results of the governing coupled partial
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differential equations, especially for surfaces with par-
ticular wall temperature distributions. Therefore the
aim of this paper is to present a detailed study and to
obtain very accurate results for the problem of free
convection flow from a vertical flat plate whose surface
temperature profile oscillates with the distance along the
plate. The problem is studied using the full coupled
momentum, vorticity and energy equations written in
terms of the non-dimensional stream function, vorticity
and temperature. This type of surface temperature dis-
tribution may be taken to model the effects of a periodic
array of heaters behind or within the wall, see [21].
Although an accurate analysis of such a configuration
would require a detailed examination of the effects of
conduction within the heated wall, known as the con-
jugate problem, we simplify the problem by imposing a
sinusoidal surface temperature distribution and we de-
termine some information about the resulting flow and
heat transfer characteristics using both numerical and
series solutions. Both steady and unsteady formulations
are investigated. For the steady-state case a series so-
Iution in powers of small Grashof number Gr is ob-
tained and closed form analytical solutions, up to terms
which are O(Gr?), are given for arbitrary Prandtl
number Pr. The numerical methods for both the solu-
tion of the steady and the unsteady flow cases are then
obtained assuming that the stream function, vorticity
and temperature can be expressed in the form of a
Fourier series expansion. In order to overcome the lack
of detail on the vorticity on the boundary, we extend
the method proposed by Li [22]. This method is differ-
ent from the one which uses the vorticity integral con-
dition which was first proposed by Dennis and Chang
[23] and Collins and Dennis [24]. Numerical results have
been obtained for a range of values of the Prandtl
number but, for brevity, the results are only presented
for Pr=1.

Finally, it is worth mentioning that an analogous
problem has been considered for a fluid-saturated po-
rous medium by Poulikakos and Bejan [25], Bradean et
al. [26-28] and Rees [29].

2. Governing equations

We consider the natural convection flow of a viscous
and incompressible fluid over a vertical flat plate whose
temperature T,,(¥) oscillates with the streamwise coor-
dinate x as follows:

T,,(x) = T + AT'sin(x/1), (1)

where T, is the temperature of the ambient fluid and /
and AT are the typical length and temperature scales,
respectively. In this case, 27/ is the period of the plate
temperature variations and AT is a characteristic tem-
perature variation. At large distances from the plate the

fluid flow is static and the temperature of the fluid re-
mains at the uniform temperature 7,,,. Cartesian coor-
dinates (x,7) are chosen along and normal to the plate,
respectively, and the fluid flow is assumed to be periodic
in the x-direction with the period 2n/. We define the
dimensionless variables as follows:

t:(a/lz)ﬁ x=x/l, y=y/l,
u=(l/o)u, v=_(I/2)p, (2)
Y= l/;/av w = (12/“)@7 T= (T_ T.)/AT,

where o is the thermal diffusivity, ¢ the time, ¥ and v are
the velocity components in the x and y directions, re-
spectively, T is the temperature, o the vorticity and  is
the stream function defined in the usual way, namely
u = 0y/0y and v = —0y/0x. Under the Boussinesq ap-
proximation, the governing equations can be written in
non-dimensional form as follows:

VY = —a, (3)

where V? is the Laplacian operator in the (x,y) coor-
dinates, and Gr and Pr are the Grashof and the Prandtl
numbers, respectively.

In addition to the periodic boundary conditions in x,
on the plate the fluid velocity is zero and the temperature
as prescribed by Eq. (1) become in non-dimensional
form,

oy

l//:_ 07

T=sinx ony=0, 0<x<2n. (6)
oy

Further, at large distances from the plate the fluid
velocity is zero and the temperature is ambient and hence
the boundary conditions are given by

&

— 0, 3

, T—-0 asy—oo, 0<x<2m

()

We have numerically solved the governing equations
(3)-(5) using an unsteady approach although in this
paper we are only interested in the steady state results.
We have found that the unsteady numerical procedure
employed can achieve the steady state solution much
more rapidly than when using an iterative approach to
the steady equations for large values of Gr.

In order to analyze the solutions for small values of
the Grashof number, we introduce the following di-
mensionless variables
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;:(UO/l)i XZJ?/I, y=)7/l,

- 1\ - -
V= <—>1//, &= (l/Uy)b, T=(T-Ty)/AT,
Ul
(8)
where Uy = (gfAT. 1)1/ ? is the fluid velocity scaling. The

relation between the scalings (2) and (8) is
t=1/(PrGr'®)i, o = PrGr'?®, = PrGr'/%) and
T = T. Thus an alternative dimensionless form of the
governing equations may be written as follows:

Vzlﬁ = _d)7 (9)
o oy o> opom 1 _,. oT

—t = — 10
ot + dy Ox Ox dy Grl/2v @+ dy’ (10)

@ %@_@@_ ! 27 (11)
of 9y ox ox 0y PrGri/2 '

and the boundary conditions for @, ¥ and 7 are exactly
same as those for w, Y and T, namely,

@,y, T are periodic functions of period 2 in x,
0<y < oo,

X

~ 0 -
Y= l// 0, T=sinx ony=0, 0<x<2m,
y
~ oy .
®—0, = —0, T—-0 asy—oo, 0<x<2m
y
(12)

For the steady problem, the governing equations are
obtained by setting 9w/0f = 0 and 0T /0t =0 in Egs.
(9)-(11), and we obtain the following equations:

VY = —a, (13)
oo Wow 1 _, T
@a—aa—y—G}’I/zv(D‘i‘a, (14)
oy dT oy oT 1 .

————— =—— V7. 1
Oy ox Ox Oy P}’Grl/Zv (15)

We use the governing equations in the form (13)—(15) in
order to determine the asymptotic solution for small
values of Gr and to construct the steady state numerical
scheme.

3. Asymptotic solution of the steady problem for small
values of Gr

In this section, we look for the perturbation solutions
of Egs. (13)-(15), subject to the boundary cogditi0n§
(12), for small values of Gr. We assume that @,y and T

may be expanded in powers of Gr'/2

form:

in the following

D= wy+ Gr'2wy + Gran + Gl + Grog+ - - ,
U=+ G2, + Grjy + Gl + Gy +---, (16)
T=Ty+Gr'’ Ty + GrTy+ Gr'l’ Ty + Gr Ty + Gr*P*Ts +
On substitution of the series (16) into Eqgs. (13)—(15), and
collecting up terms of the same power of the Grashof

number, we obtain the following sets of partial differ-
ential equations:

Viwy =0, V,=—-wy, V’T;=0, (17)

(oY, dw o, Bkt
ety it (U B0k Oy By
Vior + 55 Zm:o(ay Ox ox Oy )’

vzl//k:_wlm

e— aw akamfl aw akamfl
=Pk ——n
VL 20 dy  Ox ox Oy '

(18)

where wy, ¥, (k=0,1 ..) and 7; have the same
boundary conditions as @, 1// and T, while 7; have the
same boundary conditions as T except that
Tk|y:0 =0 for £ =1,2,.... By solving these equations up
to the fourth-order, we obtain closed form analytical
solutions with Pr as an arbitrary parameter as follows:

wy=Y,=0, T,=e"sinx,

I 1 . 1
w1:<‘—‘—§y>e’ysmx, l//lf——yermx T =0,

o _ 1 1, oy
=1, =0, Tz—Pr<128y+64y>e sin 2x,

1
1+ Pr) + L 2Py + <550

w3 =

L (
" 4096 1024 024

1
—— (1 + Pr)y*|e ¥ sin 2,
384(

1 R
Vs = {8192(1+Pr) “ea” 6144(1+P’)}

xe¥sin2y, T3=0, ws3=1,=0,

T, = Pr{ ﬁ(sm —6)e™ + [ﬁm - 51P)
by (- 28Ry b (3 3387
377 2P + g1 11Pr)y4} e*Sy} sin.x
*”{*mﬁ — 61y — g (5 617
tor1sa 2t 35Pr))° + T3+ 7}),,)y4:| ¢V sin3x,
Ts = 0.

(19)
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The structure of the above solution suggests that the full
numerical solution at a finite value of the Grashof
number may be expressed in the form of a Fourier series.

4. Full numerical method for the steady problem

Since &mﬁ and 7 in Egs. (13)-(15) are periodic
functions of period 2m in the x direction, then this
suggests that these functions have Fourier series ex-
pansions in x of the following form:

B(5.9) = L Goly) + fj{Gn () cosmx + () sinn},
Wix,y %E) )+ Z{F cosnx + f,(y) sinnx},

cosnx + t,(y) sinnx}.

Tn) = 3100 + > (H0)
(20)

By substituting the series (20) into Egs. (13)—(15), mul-
tiplying by 1,cosnx and sinnx, respectively, and inte-
grating from 0 to 2w with respect to x, we obtain the
following system of ordinary differential equations:

1

Gri/2 Gy = Ro — Ty,
1
R (G —n*G,) + 11f2/nG,1—i-}1f'2,,G;:R,,—T’:7
1 2
G €= )~ S~ =1~
Fg/ = _G07 FnN - anz = _Gm (21)
1
20
I =t = —g PrG — Ty =S,
1
PrGri/? (T;’”inzT) nf2nT +nf2nT/ =S,
1
G (& — n%,,) — Enlent,, — nfyl, = s,
where n=1,2,..., and

Ry= m(guFly— Gty fuGy+EFr),

m=1

1 R ,
R, = 7§nfnG0 +§ Z{[(m =) Fp + (m+n)Fy14]g,,

+m (Fm n\+ m+n Z {”m }’l|fm 7|

m 1,m#n

+(m+ n)ﬁrz+n]G/y,; +m[sgn(m — n)fm n| +fr/n+n]Gm}

1 4
r=5nF,Gy+ 2 S {41 o= =l

m=1,m#n
b3 (=i

- (m + n)F;ﬂJr"}G;n + m(F‘\:n n| r:1+n)Gm}7

m+n]gm

m(sgn(m—n)f, ., —

- Tmf,:, _fmT,:, +t1/nFm)7

S() = i m(th’:’
m=1

| S [
Si=—3nhTy+5 Z{[(m — 1)+ (m+n)F )L,
1 o0
+m(F, ,+F,) —Em;ﬁ{ lm — nfin—n
+ (m+n) fuial T, 4+ mlsgn(m —n)f,, 4 fr ) Tn}s

1 P Qe ,
:EnE?TO +§m ;#{[(ern) mtn = ‘mfn‘fl'ﬂ*"\}tm

=3 2 A0n =P

fm[sgn(m }’l)f“m nl M+n] m

—(m+n)F,) T, +m(F,_, —F,.) T}

(22)
Here, primes denote differentiation with respect to y and
sgn(m — n) means the sign of (m — n) with sgn(0) = 0.
The boundary conditions (11) become
Fy(0) = F5(0) =0, T,(0) =0,
F,(0) = F,(0) = £,(0) = £,(0) = 0,
7,(0) =0, #,(0) = 0,,
Gy—0, G,—0,
Fy,—0, F —0,
Ih—0, T,—0,

(23)
g —0 asy— oo,

fi—0 as y— oo,

t, =0 as y— oo,

where n=1,23,..., y=1and §,=0 (n=2,3,...).
Here we only describe in detail how to solve the equa-
tions for g,, f,and¢, but the equations for
G,, F, and T, can be solved in a similar manner. The
iterative procedure is as follows:

—n gf,k_H)

1 k+1)
Grl/2 [(gf’ " )

1
=l —nfh (g VY =~ (1)

(frl(k+1))// _ n2f;l(k+l) _ _g}skJrl)7 fﬂ(o) :f’:(o) _ 0’

g =0, f1—0 asy—ox,
(24)
U rgernyr _ ey Z L oy
mron @) =T = an(h)',
—fh (Y = o, >
£,(0) = 4, t, -0 as y— oo,

where k denotes the kth iteration. In order to over-
come the lack of a vorticity boundary condition on
y =0, we use the same method as that described by
Li [22]. The idea is to decompose the problem (24)
into two problems. First, we solve the following
problem:
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1 | RV
(et = gl =Sk ell”

Grl/2

—nfs (@) =k — (1)

IU;H) - zflkH) §+])7 (26)
g "0) = g0), gV =0 asy— o,

B0y =0, (A5 =0 as y— oo

and this is followed by the correction problem:

1 k1 k1 1 k1
o () = el = Sk el
- f‘Zn( k:l ) - 0

(k+1) (k+1 k+1
) =l = =g, 27)
(k+1)

&, —0 asy— oo,

W0) =0, (A40) =

;ffl))/ —0 as y— oo.

~(A570),

Then the (k+ 1)th iterative solution for the problem
(24) is defined by
g = e = 08)

n

and gt and f**! satisfy exactly the boundary con-

ditions of the problem (24). It should be noted that the
governing equations of the problem (27), and the
boundary conditions g“t!(0) =1, f%1(0) = 0, g*!!(c0)
— 0 and (/%) (c0) — 0, determme the solutions
git!and f5;". Then cgt' and cf¥}! are the solutions of
the problem (27), where ¢ is determined from the con-
dition that c(f*1(0))" = —(/{;'(0))". If the iterative
procedure is convergent then we have c¢=
[¢5T1(0) — g5 (0)] — 0, i.e., the solution of the problem
(27) tends to zero.

In our computations we have adopted the following

transformations for the variable y:

z=e":ye(0,n) —z€(z1,1),
1 (29)

)iy€(y0a00)ﬂ’1€(0:1)7

n:1+d(y—YO

where y;, < y; and d and y are constants to be specified.
The advantage of using these transformations is that a
fine mesh near the vertical plate is produced and it is in
this region where more detail is required in order to
better approximate the more rapid changes in all the
quantities which we are determining. Thus, we take the
grid size iy = 1/(M; + 1) for z and z, = h; and then
yi =—(1/y)Inh;. We discrete the equations with the
variable z by using the central-difference approximations
atz = 2hy,3hy, ..., Mh. Next, we choose yp = —(1/y) In
(2hy). If hy = 1/(M, + 1) is the grid size for 5, we let
(I —hy) =1/(1+d(n —w)) and then we take d = ph,/
((I = hy)In2). This means that we can use central dif-
ferences at 5 = 2hy, 3hy, ..., M>h, for the equations with
the variable 5. At the first point n = h,, the first deriv-

ative terms (for example, 2c?i’g,), which are introduced

by transforming the second derivative term, are ap-
proximated by a forward-difference quotient and the
other terms are approximated by central differences.
Because of the relationship #° = 43, the truncation error
still remains O(43). The Neumann boundary conditions
are approximated by the use of a second-order accurate
formulae.

From the above method, the boundary conditions,
and the expressions for Ry, R,, Sy and S,,, we observe that
the numerical solution is anti-symmetrical if the initial
iterative values are anti-symmetrical in x and we take
these functional values to be those obtained from the
previously obtained solutions at a lower value of Gr,
starting with Gr = 0 (i.e. forced connection flow). This
anti-symmetrical nature of the solutions is in agreement
with the asymptotic solution of the steady problem for
small values of Gr. We have successively found solutions
for Grashof numbers 0, 100, 225, 400 and 625 and all the
five numerical solutions retain the anti-symmetrical
property. For Gr =400 and Gr = 625, we change the
iterative procedure, namely we use two sub-cycles to
achieve the convergence of Egs. (24) and (25). The first
sub-cycle is to determine the vorticity and the stream
function and the second sub-cycle is to determine the
temperature function.

In all of the iterative procedures, under-relaxation is
employed in order to obtain convergent solutions and
we use o, to denote a relaxation parameter and € as the
criteria for the iterative procedure to converge. For ex-
ample, we obtain gV from Eq. (28) if

gy — gl <, (30)

and then the iterative procedure is terminated, otherwise
the new (k + 1)th value which is introduced into the next
iteration is given by

g = g% + (1 - w,)g®, (31)

where 0 < w, < 1.

5. Numerical method for the quasi-steady problem

As for the steady problem, we assume that
w, Y and T in Egs. (3)-(5) have Fourier series expan-
sions in x of the form:

1 e .
@(x.y.0) =5Go(,0) + Y_{Gy(y.1) cosnx+g,(y,0)sinnx},

n=1

W)= 3B 0)+ S 1) cosr £, (v,0)sin],
n=1

1 00
T(r,t) =5 To(r0) + D AT, 0)cosnx-+1,(v,0) sinml,

n=1

(32)
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where Gy, Fy, To, G, F,,, T,,, &4, f» and t, are given by the
following equations:

0Gy G, , 0Ty
=GrP?——R
o gz =g, R
oG G, 1 9
n _ [)r n _ 2 _ = n
ot ( S G") 2"y O
oG o7,
—t = GrP? =2 —R,
}’lfz ay r ay )
agn 6gn 2 1 aﬁlz
o (ay2 8 | 317, &
an)zagn - G Prz%f ny
oy
O*F
a—yz: —G07
2
a EI - an’t = 7Gn7
0y?
Of
ayz —n fn = —&n
o, T,
E—g =80,

aTn 627;1 2 1 afzn aT"

o ( o " T"> 2"y T”_nﬁ"@___s"’
o, (&,
ot 0y?

where n =1,2,..., Ry,R,, 74, S0,S,,s, and the boundary
conditions are the same as those presented in Section 4,
namely Egs. (22) and (23). We now describe in detail
how to solve the Egs. (33) for g, and f,, while the other
functions can be solved in a similar manner. On using
the time step At, the equations for determining g, and f,
are given by

g —gn _l [ m+1 2 m+1:|
At 2 (g)'l ) —n gn

fm+ 1/2)(gm+l) }

1 9f
— 2 d = —
n tn) +2 a t, + f2n Sny

(33)

( m+ 1/2)) m+l

1 " 2 1 m+(1/2)\7
[ PV|: m\" m:| - m
2 { (gn ) ng, 2” 2n ) &
_n m+ (1/2) (gn) } + GrPrz(zZ”“/z))’ _ r;nm/z)7

(j‘m+l) —n fm+l — m+l
‘ 'm+1‘ 0= (fnm-H) |y:0 _ O7
0, (™ —0 as y— oo, (34)

gil -

where m denotes the mth level for the time step,
2 — (1)2)(f2 + f1m), ete. Eqgs. (34) are solved by

the same iterative technique as described in Section 4.
Therefore we first consider the following problem:

m At m m
gl,rtl _7{ [(&:1) nzglﬂ
m 1/2),k m m+(1/2)k 1 m
( w2 ) 1,:1 —-n 2n+< /2 (gl.nﬂ)l}

— e+ 5 { Pl -]

1 m~+(1/2) k71 m-+(1/2) k
_En 2/1(/))g:l_n2n /2 (gn)
+ At [G},Prz(t;n+<1/2).k)/ -~ ,,:1+<1/2),k]7
O
grlnn+1 -~ g)};n+1 01 g;n;rl _ 0 as y — 00,
=0, () =0 as y— oo, (35)

where the superscrlpt k refers to the kth iteration,
m+(1/2).k n m mn

o = (2 (5 - f) and g0 = g,
Next, we solve the followmg problem:

At 1
&' =5 {Pr[(g?I‘) gy

1 m+(1/2 m m+(1/2)k ¢ m
2 n(fo e )gz‘n+1 —-n 2n+( /2 (gz,:l)/ =0,
( m+l) m+l — g;'l+l
gm;rl —0 as ¥ — 00,
7 1(0) =0,
2 0) = =07 0), (1) =0 as y— oo
(36)
At the (m + 1)th time step, the (k + 1)th iterative solu-
tions for the problem (34) are defined by
g,rlrl+lk+l grl)z:l _’_g;;z;rl7 f:Hl‘k+l = 1anrl +fm+l. (37)

We have ¢ = [g"T1#H1(0) — g"™14(0)] — 0 if the iterative
procedure is convergent. We also use the same variable
transformations for y given by Eq. (29).

We start our calculations with the steady solution for
Gr =100 and then use these as the initial values when
determining the solution for Gr = 625. We continue to
use the solution obtained for the largest value of Gr for
which we have a solution as the initial approximation
for the solution at the next higher value of the Grashof
number. Thus we find the steady state solutions using
this approach for Grashof numbers 625-2500-5625—
10000. As in Section 4, we observe that the numerical
solutions are anti-symmetrical if the initial values are
anti-symmetrical and this is as we would have physically
expected.
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6. Numerical results and discussion

The asymptotic and numerical solutions have been
computed for the steady problem (13)—(15) for small

Table 1
The average Nusselt number Nu
Gr Asymptotic hy = 1/100, hy = 1/200,
hy, =1/10 h, =1/20
0.01 2.00000 2.00000 2.00000
0.25 2.00001 2.00001 2.00001
1 2.00014 2.00014 2.00014
4 2.00222 2.00220 2.00221
9 2.01122 2.01097 2.01098
16 2.03546 2.03316 2.03318
25 2.08658 2.07445 2.07450
100 3.38522 2.48492 2.48522
225 9.01269 2.92087 292164
400 24.16355 3.30310 3.30459
625 56.11022 3.64491 3.64731
L I T T T T 35

values of Gr. If we terminate the Fourier series after N
terms then if N is sufficiently large then all the terms
after the Nth term are extremely small. In our numerical
procedure we have fixed a value of N and if the Nth term
is sufficiently small, say less than 10~ for the steady
problem, then we have an accurate solution otherwise
we choose a larger value of N and repeat the process. As
a result, if Gr is small then the value of N can be taken to
be small, for example, when Gr <225 we have found
that a value of N = 20 is sufficiently large. As the value
of Gr increases then the value of N required to obtain
accurate solutions also increases, for example, when
Gr = 10000 then a value of N = 48 is necessary. In all
the computations presented in this paper we have taken
Pr =1 but we have no difficulties in obtaining results for
other O(1) values of Pr. Also we have found that a value
of y=0.5, as introduced in the first variable trans-
formation of y, see Eq. (29), is a reasonable value to take
in order to achieve accurate results. When using the
numerical method for the steady problem, results for

T T T T T T 35

(d) y

Fig. 1. The streamlines: (a) Gr = 1, (b) Gr = 100, (c) Gr = 400 and (d) Gr = 625 (steady and unsteady results).
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Gr < 225 have been obtained using the grid sizes & =
1/100,h, = 1/10 and h; = 1/200,h, = 1/20 and choos-
ing N =20, o, = 0.1 and € = 1077 in the iterative pro-
cedures. However, for Gr =400 and 625, the results
obtained by using the steady numerical method were
obtained with N =25, o, =0.1 and ¢ = 10~% and the
sub-cycles technique has been employed in the iterative
procedures.

The practical quantity of greatest interest is usually
the average Nusselt number, Nu, and it is given by

— Tor
Nu:—/ —
Jo Oy

We have computed the asymptotic solutions for small
values of Gr, as given by Eqs (16), up to the O(Gr?)
terms. By substitution of Egs. (16) and (19) into Eq.
(38), the asymptotic formula for the average Nusselt
number Nu is given by

d. (38)

y=0

2319

1103

Nu=2+ 556 624

Gr* +0O(Gr). (39)

The asymptotic and numerical results for the average
Nusselt number are given in Table 1 for values of the
Grashof number in the range 0.01-625. We see from
Table 1 that the two sets of numerical results on different
grids are in good agreement for all values of Gr up to
625. Also the numerical and asymptotic predictions are
in very good agreement for Gr<4. However, when
Gr =25, we observe that the error in the asymptotic
solution is starting to become significant and this means
that the asymptotic solution cannot be used for values of
the Grashof numbers which are larger than about 25. It
is seen from the results displayed in Table 1 how the heat
transfer changes from being conduction dominated to
the thermal boundary-layer convection situation.

Since the solutions are anti-symmetrical with respect
to x, the streamlines and the isotherms are only shown

(d) y

Fig. 2. The isotherms: (a) Gr = 1, (b) Gr = 100, (c) Gr = 400 and (d) Gr = 625 (steady and unsteady results).
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n [0, 7] x [0,2n] in Figs. 1 and 2 for Gr = 1, 100, 400
and 625. The results obtained from the two different
grids employed are graphically indistinguishable and
hence the results presented here are for the finer mesh.
The streamline maps illustrated in Fig. 1 show that the
heated flat plate generates a stream of fluid which flows
upwards in the hot region near to the plate and this gives
rise to a cellular motion. As we would physically expect,
the distance that the cellular flow penetrates increases as
Gr increases. Furthermore, these figures confirm that the
oscillating wall temperature distribution induces a ver-
tical boundary-layer flow that discharges itself horizon-
tally into the surrounding fluid. On the other hand, we
can see that the isotherms shown in Fig. 2(b) begin to
distort and the distortion increases as the Grashof
number increases.

For large values of the Grashof number, the solution
of the steady equations using the iterative approach is
not appropriate because of the huge amount of com-
putational work that has to be performed. This is due to
the use of the part explicit approximation for the con-
vective terms in the series truncation method. Therefore
we employ the unsteady numerical approach to obtain
the steady solutions. In order to check the accuracy of
the unsteady numerical solution approach, we com-
pare the steady state results obtained from the unsteady
numerical approach with the results obtained from the
steady equations using an iterative process for Gr = 625.
We have found that the unsteady solution rapidly ap-
proaches the steady solution if we numerically solve Egs.
(3)-(5). Further, it is important to note that in all the
streamlines presented from the unsteady solutions, we
have adopted the same scalings as those employed in the
steady numerical solution approach. This means that if
Y is the numerical solution of Egs. (3)—(5) then the
values of /(PrGr'/?), which correspond to the scaling
8, are presented. At each time step under-relaxation is
also adopted with w, = 0.1 , ¢, = Gr'/?> x 107° for the
vorticity and the stream function and e; = 10~ for the
temperature. The initial solution is taken to be the result
obtained from the steady state approach with Gr = 100.
The time steps are chosen to be At = 0.0001 for the first
10 steps, Az = 0.001 for the 11-60th steps, At = 0.005 for
the 61-80th steps, Az = 0.01 for the 8§81-100th steps and
At = 0.05 after the 100th step. Figs. 1(d) and 2(d) show
the streamlines and the isotherms obtained from the
steady and unsteady numerical solutions (¢ =7) for
Gr = 625. It is observed that the results obtained for the
streamlines and the isotherms are indistinguishable from
those obtained when using the steady state approach.

The average Nusselt number is shown in Fig 3 for
Gr = 625 for 0 <t <2. We have found that at ¢t = 7, the
value of Nu is 3.64490 and this differs from the steady
state value by only 0.00001. This confirms that the un-
steady method gives very accurate solutions of the
steady state problem. Fig. 3 also shows that, as expected,

3.8

36

34

2.8

26

24

0 05 1 15 2
t
Fig. 3. The average Nusselt number as a function of the di-

mensionless time 7 for Gr = 625. (+ + +) steady result; (— — —)
unsteady result.

the average Nusselt number rapidly increases from its
initial value to its final steady state value.

Using the unsteady numerical method, numerical
results have also been obtained for Gr = 2500, 5625,
10000. In the computations we have taken N = 32 for
Gr = 2500, N =40 for Gr = 5625 and N = 48 for Gr =
10000 and the same grid size #; = 1/100,4, = 1/10 for
the three values of Gr. The average Nusselt numbers are
shown in Fig. 4 for Gr = 2500, 5625 and 10000 as a
function of time for 0 <#< 2 and clearly there is a rapid
approach to the steady state as time increases. At t = 7,
the average Nusselt numbers are 5.00869, 6.06368 and
6.95319 for Gr =2500,5625 and 10000, respectively.
Figs. 5 and 6 show the streamlines and the isotherms at
t =7 for Gr=2500 and 10000 with A4, = 1/100,4, =
1/10. We observe from these figures that the streamlines
and the isotherms exhibit a similar form to those ob-
tained from using the steady state equations, see Figs. 1
and 2. We observe that the flow consists of symmetrical

75

7L Gr=10000
6.5
Gr=5625
6+
Nu 5.5
5 Gr=2500
450
4
35 I I I
0 05 1 15 2

Fig. 4. The average Nusselt numbers for Gr = 2500, Gr = 5625
and Gr = 10000 as a function of the dimensionless time ¢.
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Fig. 6. The isotherms at the dimensionless time ¢ = 7: (a) Gr = 2500 and (b) Gr = 10000.

cells whose relative size and shape depend on the
Grashof number and have a significant effect on the heat
transfer across the boundary-layer. Thus, all the results
presented in this paper give us a good degree of confi-
dence in the methods employed.

7. Conclusions

The steady and unsteady numerical methods for the
natural convection flow from a vertical flat plate with a
surface temperature oscillation have been investigated.
For the steady problem with small values of the Grashof
number, the asymptotic formula for the average Nusselt
number is obtained by a perturbation method. The heat
transfer occurs because of the oscillating wall tempera-
ture distributions and the average Nusselt number in-

creases as the Grashof number increases. For small
values of Gr, the heat and cellular flow penetrate into the
surrounding fluid horizontally and smoothly and as the
Grashof number increases then the temperatute distri-
bution becomes more distortive. For very large values of
Gr, up to 10000, the flow remains steady and all the
numerical results show that the proposed methods of
solution are very efficient and accurate. These methods
can easily be extended to other heat transfer problems.
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